CONTENTS OF THIS PAGE:
How to solve linear equations part 1 / linear equations in one variable
Algebra / how to add algebraic expressions / addition of algebraic expressions / rules of algebra
Algebra / how to subtract algebraic expressions / subtraction of algebraic expressions / rules of algebra
How to multiply algebraic expressions / multiplication of algebraic expressions
How to divide algebraic expressions / division of algebraic expressions
Decimal division / how to divide decimals (video)
ADDITION OF ALGEBRAIC EXPRESSIONS:
While adding algebraic expressions, the like terms are grouped together and their signs are taken as they are. Integer rules are then applied. The answer will be an algebraic term or expression only.
We subtract the second algebraic expression from the first. Here we change signs for the second expression as there is a minus sign involved in subtraction. All the terms of the second expression change sign. In the next step, the like terms are combined and integer rules are applied. Here again , the answer is either an algebraic term or an expression.
In both addition and subtraction of algebraic expressions, the unlike terms are retained in the final answer.
ADDITION OF ALGEBRAIC TERMS
SUBTRACTION OF ALGEBRAIC EXPRESSIONS
MULTIPLYING A MONOMIAL BY A MONOMIAL
As mentioned, the powers of the like terms are added together and the unlike terms are written along with the other terms in the final answer.
Binomial with a monomial. The monomial is common to both the terms inside the bracket.
Multiplication of a binomial with a binomial
Binomial with a binomial. The first term from the first expression is multiplied with both the terms of the second expression. Likewise its second term is also multiplied with both the terms of the second expression.
Multiplication of a trinomial with a binomial
ALGEBRAIC DIVISION
In algebraic division, the rules of exponents are followed for combining the like terms and all other unlike terms are written along with other terms in the final answer.
LINEAR EQUATIONS:
A linear equation in one variable consists of constant and a variable of degree 1.
Examples: 3x + 6, 2y - 7
On the left hand side LHS, the variable is retained and the constants are removed as shown. On cancellation, the variable takes the value that is on the right hand side RHS.
The coefficients and constants are removed using basic arithmetic operations.
PRACTICE SHEET FOR CLASS 7